January, 1937

Broadcaster Service Man's Manual

# (FFNGIN

### 650 ALL-WAVE PILOT SUPERHET

CIRCUIT.—A five-valve plus rectifier superhet for operation on A.C. mains and working on the usual medium and long wavelengths and two short bands.

An inductively coupled aerial transformer precedes V1, an H.F. pentode, which is coupled through a further transformer to V2, the frequency changer Top capacity coupling is employed on the first

short wave band.

An I.F. transformer tuned to 456 kc. is used to couple the signal to V3, an H.F. pentode, and through a second H.F. pentode to V4, a double diode triode. Both these transformers have a third winding interposed between the main winds and taking the form of a simple tuned circuit,

the effect being to increase the selectivity.

The cathode ray tuning indicator is operated from this stage by the rectified signal from V4.

The volume control, R11, also operates at this stage by regulating the input to the grid. The pick-up, when connected, breaks the coupling between the diode and the

grid and is coupled via C29 to the grid.

The diodes of V5 are strapped and used for both demodulation and to provide A.V.C. bias, which is fed to V1 and V2 in the orthodox manner. V3 is not con-

trolled by A.V.C.
L.F. signals from V4 are resistance and capacity coupled to the output pentode V5, and then to the moving-coil speaker through a matching transformer. V5 is tone-controlled by C36 and R18.

Mains equipment consists of transformer, full-wave rectifier, electrolytic condensers and the speaker field.

Special Notes.-The six dial lights are of the miniature bayonet-cap type, and replacements should be obtained from the manufacturers. The holders are secured to



An electronic tuning indicator is incorporated in this five-valve plus rectifier all-wave American-type superhet marketed by Pilot Radio Ltd.

#### VALVE READINGS Volume maximum. 200 volts A.C.

| v.     | Type.      |    | Electrode. | Volts. | Ma.  |
|--------|------------|----|------------|--------|------|
|        | All Pilot. |    |            |        |      |
| 1      | 6D6 (6)    |    | Anode      | 250    | 6.25 |
|        |            |    | Screen     | 95     | 1.   |
| 2      | 6A7 (7)    |    | Anode      | 250    | 3.5  |
|        |            |    | Screen     | 65     | 2.9  |
|        |            |    | Osc.anode  | 145    | 2.8  |
| 3      | 6D6 (6)    |    | Anode      | 225    | 5.9  |
| •      | (-,        |    | Screen     | 95     | 1.1  |
| 4      | 75 (6)     |    | Anode      | 50     | .3   |
| 4<br>5 | 42 (6)     |    | Anode      | 230    | 37   |
| -      | \-//•      | ٠. | Screen     | 250    | 6,5  |
| 6      | 80 (4)     |    | Filament   | 340    |      |

the dial assembly by spring clips and are easily removed.

49

The external speaker is connected on the primary of the output transformer and should have its own matching transformer.

Removing Chassis .- Remove four knobs from the front of the cabinet, the tuning knob being secured by a grub screw and the others by spring clips, unplug the speaker from its socket on the back of the chassis and then remove four bolts from underneath the cabinet.

The chassis may then be partly with-drawn and the tuning indicator plug removed from the front of the chassis. The chassis will then be entirely free.

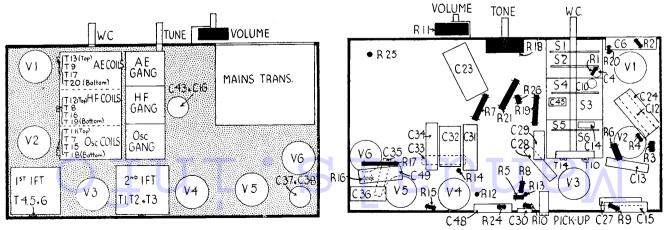
#### ALIGNMENT NOTES

I.F. Circuits.—Switch the receiver to the medium wave band and fully mesh the condenser plates. Connect an output meter, to read 1.5 volts, across the external speaker terminals. Inject a signal of 456 kc. and about

.5 volt via a dummy aerial to the grid of V3, and adjust T1, T2, T3 for maximum.

Transfer the oscillator to the grid of V2, and trim T5, T4 and T6 for maximum.

Medium Waves.—Tune the receiver to


200 metres and inject a signal of this wavelength to the aerial and earth terminals. Adjust T7, T8 and T9 for maximum reading on the output meter.
Inject and tune in a signal of 500 metres

and, while rocking the gang condenser, adjust T10 for maximum.

Carefully repeat the above adjustments until no further improvement is possible.

Long Waves.—Tune the receiver to 750 metres and inject a signal of this frequency

(Continued on next page.)



The orderly construction of the chassis of the Pilot set is shown by these layout diagrams. Resistors are indicated in solid black to speed reference.

## PILOT 650 SUPERHET

(Continued from previous page.) to the aerial and earth terminals. Adjust T11, T12 and T13 for maximum.

Inject and tune in a signal of 2,000 metres and, while rocking the gang condenser, adjust T14 for maximum output.

Repeat the above until the best results are obtained.

Short Wave 2.- Set the pointer to the 49 metre index mark, inject a signal of

| R.         Purpose.         Ohms.           1         V1 A.V.C. decoupling         100,000           2         V1 cathode bias         400           3         V2 cathode bias         400           4         V2 osc. grid leak         50,000           5         Diode load (part)         100,000           6         V2 screen decoupling         30,000           7         V2 screen and osc. anode deceupling         10,000           8         V2 A.V.C. decoupling         1 meg.           9         V3 cathode bias         600           10         Diode load (part)         200,000           11         Volume control         1 meg.           12         Diode load (part)         200,000           13         V4 cathode bias         40,000           15         V4 anode decoupling         100,000           16         V5 grid leak         500,000           17         V5 cathode bias         100,000           18         Tone control         100,000           19         V1 and V3 screen decoupling potr.         40,000           20         V2 land V3 screen decoupling potr.         40,000           21         V2 scrcen and osc. anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | RESISTANCES                  |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------|---------|
| 2   V1 cathode bias   400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R. | Purpose.                     | Ohms.   |
| 2   Vi cathode bias   400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1  | V1 A,V,C, decoupling         | 100,000 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2  | V1 cathode bias              |         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3  | V2 cathode bias              | 400     |
| 6 V2 screen decoupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4  | V2 osc. grid leak            | 50,000  |
| coupling.   1 meg.   600   10   Diode load (part)   50,000   1 meg.   12   Diode load (part)   200,000   13   V4 cathode bias   40,000   14   V4 anode load   250,000   15   V4 anode decoupling   100,000   15   V4 anode decoupling   100,000   16   V5 grid leak   500,000   17   V5 cathode bias   410   100,000   18   Tone control   100,000   19   V1 and V3 screen decoupling   20   V2 screen and osc. anode decoupling   20   V2 long-wave modifier   22   V2 long-wave modifier   23   Long-wave aerial coil modifier   25   Long-wave aerial coil modifier   25   Tuning indicator grid   1 meg.   1 meg.   26   V3 anode decoupling   4,000   1 meg.   26   V3 anode decoupling   4,000   1 meg.   27   28   28   29   29   29   29   29   29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5  |                              | 100,000 |
| coupling.   1 meg.   600   10   Diode load (part)   50,000   1 meg.   12   Diode load (part)   200,000   13   V4 cathode bias   40,000   14   V4 anode load   250,000   15   V4 anode decoupling   100,000   15   V4 anode decoupling   100,000   16   V5 grid leak   500,000   17   V5 cathode bias   410   100,000   18   Tone control   100,000   19   V1 and V3 screen decoupling   20   V2 screen and osc. anode decoupling   20   V2 long-wave modifier   22   V2 long-wave modifier   23   Long-wave aerial coil modifier   25   Long-wave aerial coil modifier   25   Tuning indicator grid   1 meg.   1 meg.   26   V3 anode decoupling   4,000   1 meg.   26   V3 anode decoupling   4,000   1 meg.   27   28   28   29   29   29   29   29   29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6  |                              | 30,000  |
| 8 V2 A.V. decoupling 1 meg. 600 10 Diode load (part) 50,000 11 Volume control 1 meg. 120,000 13 V4 cathode bias 40,000 14 V4 anode load . 250,000 15 V4 anode load . 250,000 16 V5 grid leak 500,000 17 V5 cathode bias 100,000 18 Tone control 100,000 19 V1 and V3 screen decoupling potr. 100,000 19 V1 and V3 screen decoupling coupling potr. 12 screen and osc. anode decoupling. 25 V2 long-wave modifier coupling. 25 Uning indicator grid 1 meg. 1 meg. 25 Tuning indicator feed 1 meg. 1 meg. 1 meg. 1 meg. 1 meg. 4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7  |                              | 10,000  |
| 9 V3 cathode bias 50,000 11 Volume control 1 meg. 12 Diode load (part) 200,000 13 V4 cathode bias 40,000 14 V4 anode load . 250,000 15 V4 anode decoupling 100,000 16 V5 grid leak 500,000 17 V5 cathode bias 410 18 Tone control 100,000 19 V1 and V3 screen decoupling potr. 20 V1 and V3 screen decoupling potr. 21 V2 screen and osc. anode decoupling. 22 V2 long-wave modifier 25 Long-wave aerial coil modifier 40,000 24 Tuning indicator grid 1 meg. 25 Tuning indicator feed 1 meg. 26 V3 anode decoupling . 4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٥  |                              | 1       |
| 10   Diode load (part)   50,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  |                              |         |
| 11   Volume control   1 meg.   12   Diode load (part)   200,000   13   V4 cathode bias   40,000   15   V4 anode load   250,000   16   V5 grid leak   500,000   17   V5 cathode bias   410   18   Tone control   100,000   19   V1 and V3 screen decoupling potr.   20   V1 and V3 screen decoupling potr.   21   V2 screen and osc. anode decoupling.   22   V2 long-wave modifier   23   Long-wave aerial coil modifier   250   C1   C1   C2   C3   C3   C4   C4   C4   C4   C4   C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                              |         |
| 12   Diode load (part)   200,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                              |         |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                              |         |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                              | 40,000  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                              |         |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 |                              |         |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16 |                              |         |
| 19 V1 and V3 screen decoupling potr. 20 V1 and V3 screen decoupling potr. 21 V2 screen and osc. anode decoupling. 22 V2 long-wave modifier 23 Long-wave aerial coil modifier 24 Tuning indicator grid 1 meg. 25 Tuning indicator feed 1 meg. 26 V3 anode decoupling 40,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 |                              |         |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 | Tone control                 | 100,000 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 |                              |         |
| V2 screen and osc. anode decoupling.   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   2 | 20 | V1 and V3 screen decoupling  | 40,000  |
| 22   Y2 loing-wave modifier   250   23   Long-wave nerial coll modifier   50,000   1 meg.   24   Tuning indicator grid   1 meg.   25   Y3 anode decoupling   4,000   4,000   1 meg.   26   Y3 anode decoupling   1 meg.   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   25 | 21 | V2 screen and osc. anode de- | 10,000  |
| 23         Long-wave aerial coil modifier         50,000           24         Tuning indicator grid         1 meg.           25         Tuning indicator feed         1 meg.           26         V3 anode decoupling         4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 |                              | 250     |
| 24         Tuning indicator grid          1 meg.           25         Tuning indicator feed          1 meg.           26         V3 anode decoupling          4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                              | 50,000  |
| 26 V3 anode decoupling 4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                              | 1 meg.  |
| Field coil 1,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26 |                              | 4,000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | Field coil                   | 1,400   |

this frequency and trim T15, T16 and T17 tor maximum.

Short Wave 1 .- Tune to 16.6 metres and inject a signal of 16.6 metres to the aerial and earth terminals. Trim T18, T19 and T20 for maximum, rocking the gang condensers while adjusting T19.

| 6 V1 10 V2 113 V2 114 V2 115 V2 116 V2 20 Shock 22 Shock 22 V1 24 V1 25 Nee 27 V3 28 V3 28 V3 28 L.F. 30 H.I. 31 V4 33 L.F. 36 Toi 38 H.I. 38 H.I. 38 V2 30 H.I. 31 V4 32 V5 34 V5 36 H.I. 38 H.I. 38 H.I. 38 H.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Purpose.  A.V.C. decouplin cathode bias shu screen decouplin osc. grid screen and osc. a outpling, screen and osc. a coupling rt-wave padding rt-wave padding anode decouplin screen decouplin screen decouplin screen decouplin cathode bias shu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g nt g nt conde do node do     | e-<br>e- | Mfd05 .1 .05 .1 .05 .2 .00005 .2 .00137 .00287 .25 .1                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|-------------------------------------------------------------------------|
| 6 V1 10 V2 113 V2 114 V2 115 V2 116 V2 20 Shock 22 Shock 22 V1 24 V1 25 Nee 27 V3 28 V3 28 V3 28 L.F. 30 H.I. 31 V4 33 L.F. 36 Toi 38 H.I. 38 H.I. 38 V2 30 H.I. 31 V4 32 V5 34 V5 36 H.I. 38 H.I. 38 H.I. 38 H.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cathode bias shu A.V.C. derouplin cathode bias shu screen decouplin; osc. grid screen and osc. a coupling, screen and osc. a coupling rt-wave padding anode decouplin; screen decouplin screen decouplin screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt g nt g node d node d        | e-<br>e- | .1<br>.05<br>.1<br>.05<br>.00005<br>.05<br>2<br>.00137<br>.00287<br>.25 |
| 6 V1 10 V2 113 V2 114 V2 115 V2 116 V2 20 Shock 22 Shock 22 V1 24 V1 25 Nee 27 V3 28 V3 28 V3 28 L.F. 30 H.I. 31 V4 33 L.F. 36 Toi 38 H.I. 38 H.I. 38 V2 30 H.I. 31 V4 32 V5 34 V5 36 H.I. 38 H.I. 38 H.I. 38 H.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cathode bias shu A.V.C. derouplin cathode bias shu screen decouplin; osc. grid screen and osc. a coupling, screen and osc. a coupling rt-wave padding anode decouplin; screen decouplin screen decouplin screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt g nt g node d node d        | e-<br>e- | .1<br>.05<br>.1<br>.05<br>.00005<br>.05<br>2<br>.00137<br>.00287<br>.25 |
| 12 V2<br>13 V2<br>16 V2<br>16 V2<br>20 Shoc<br>22 Shoc<br>22 Sv1<br>25 Net<br>27 V3<br>29 L.F.<br>30 H.I.<br>32 V4<br>33 L.F.<br>34 V5<br>36 Tor<br>37 H.I.<br>34 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cathode bias shu<br>screen decoupling<br>osc. grid<br>screen and osc. a<br>oupling.<br>screen and osc. a<br>coupling<br>ort-wave padding<br>ort-wave padding<br>anode decoupling<br>screen decoupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt<br>g<br><br>node d<br><br>g | e-<br>e- | .1<br>.05<br>.00005<br>.05<br>2<br>.00137<br>.00287<br>.25              |
| 13 V2<br>14 V2<br>15 V2<br>20 Shot<br>22 Shot<br>22 V1<br>25 V1<br>25 V2<br>27 V3<br>28 V3<br>29 L.F.<br>30 H.I.<br>31 V4<br>33 L.F.<br>36 Tor<br>37 H.T.<br>38 H.T.<br>44 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | screen decoupling ose, grid screen and ose, a oupling, screen and ose, a coupling out-wave padding ort-wave padding anode decoupling screen decoupling scree | node d                         | e-<br>e- | .05<br>.00005<br>.05<br>2<br>.00137<br>.00287                           |
| 14 V2<br>15 V2<br>16 V2<br>20 Shoc<br>23 V1<br>24 V1<br>25 Net<br>27 V3<br>29 L.F.<br>30 H.I.<br>31 V4<br>32 V4<br>33 L.F.<br>34 V5<br>36 H.G.<br>37 H.G.<br>38 H.G.<br>38 H.G.<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | osc. grid screen and osc. a oupling. screen and osc. a coupling art-wave padding anode decoupling accoupling anode decoupling screen decoupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | node d                         | e-<br>e- | .00005<br>.05<br>2<br>.00137<br>.00287<br>.25                           |
| 20 Shoc 22 Shoc 22 Shoc 22 Shoc 22 V1 25 Net 22 V3 28 V3 29 L.F. 33 L.F. 31 V4 32 V5 36 For 36 H.M. 34 V5 36 H.M. 34 V2 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oupling, screen and osc. a coupling rt-wave padding rt-wave padding anode deroupling screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | node d                         | e-       | .05<br>2<br>.00137<br>.00287<br>.25                                     |
| 20 Shoc 22 Shoc 22 Shoc 22 Shoc 22 V1 25 Net 22 V3 28 V3 29 L.F. 33 L.F. 31 V4 32 V5 36 For 36 H.M. 34 V5 36 H.M. 34 V2 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oupling, screen and osc. a coupling rt-wave padding rt-wave padding anode deroupling screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | node d                         | e-       | 2<br>.00137<br>.00287<br>.25                                            |
| 20 Shock 22 Shock 23 V1 224 V1 25 Net 27 V3 28 V3 1 V4 32 V4 33 L.F. 336 To 336 H.I. | coupling<br>ort-wave padding<br>ort-wave padding<br>anode decoupling<br>screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>z<br>g                     |          | .00137<br>.00287<br>.25                                                 |
| 20 Sho<br>22 Sho<br>23 V1<br>24 V1<br>25 Nev<br>27 V3<br>28 V3<br>29 L.F<br>30 H.I<br>31 V4<br>33 L.F<br>34 V5<br>35 Per<br>36 Tou<br>37 H.I<br>38 H.I<br>38 V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ort-wave padding<br>ort-wave padding<br>anode decoupling<br>screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>g                          |          | .00287<br>.25                                                           |
| 22 Sho<br>23 V1<br>24 V1<br>25 Net<br>27 V3<br>28 V3<br>29 L.F<br>30 H.I.<br>31 V4<br>32 V4<br>33 L.F<br>35 Per<br>36 Ton<br>37 H.I.<br>38 H.I.<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rt-wave padding<br>anode decoupling<br>screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>g                          |          | .00287<br>.25                                                           |
| 23 V1 24 V1 25 Net 27 V3 28 V3 29 L.F 30 H.I 31 V4 32 V4 35 Per 36 To 37 H.I 38 H.I 43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anode decoupling<br>screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g                              |          | .25                                                                     |
| 24 V1<br>25 Net<br>27 V3<br>28 V3<br>29 H.I.<br>30 H.I.<br>31 V4<br>32 V4<br>35 Per<br>36 Too<br>37 H.T.<br>38 H.T.<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | screen decouplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g                              |          |                                                                         |
| 25 Net<br>27 V3<br>28 V3<br>29 L.F<br>30 H.I<br>31 V4<br>32 V4<br>33 L.F<br>35 Per<br>36 Tor<br>37 H.7<br>38 H.7<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | • • •    | •                                                                       |
| 27 V3 28 V3 29 L.F 30 H.I 31 V4 32 V4 33 L.F 35 Per 36 Tor 37 H.I 38 H.I 43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cathode hise chu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.0                           |          |                                                                         |
| 28 V3 29 L.F 30 H.I 31 V4 32 V4 33 L.F 35 Per 36 Tor 37 H.I 38 H.I 43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt act.                        |          | .1                                                                      |
| 29 L.F.<br>30 H.I.<br>31 V4<br>32 V4<br>33 L.F.<br>34 V5<br>35 Per<br>36 To<br>37 H.I.<br>38 H.I.<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | anode decoupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                              |          | .05                                                                     |
| 30 H.I<br>31 V4<br>32 V4<br>33 L.F<br>34 V5<br>35 Per<br>36 Tor<br>37 H.I<br>38 H.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ', coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |          | .01                                                                     |
| 32 V4<br>33 L.F<br>34 V5<br>35 Per<br>36 Tor<br>37 H.7<br>38 H.7<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f. filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | .00025                                                                  |
| 33 L.F<br>34 V5<br>35 Per<br>36 Tor<br>37 H.7<br>38 H.7<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cathode bias shu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt                             |          | 10                                                                      |
| 34 V5<br>35 Per<br>36 Tor<br>37 H.7<br>38 H.7<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anode decoupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z                              |          | .1                                                                      |
| 34 V5<br>35 Per<br>36 Tor<br>37 H.7<br>38 H.7<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          | .01                                                                     |
| 36 Tor<br>37 H.1<br>38 H.1<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cathode bias shu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt                             |          | 10                                                                      |
| 36 Tor<br>37 H.1<br>38 H.1<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itode compensati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng                             |          | .005                                                                    |
| 38 H.7<br>43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |          | .05                                                                     |
| 43 V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Γ. smoothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |          | 8                                                                       |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F. smoothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |          | ત્રુ                                                                    |
| 44 9 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | screen and osc. a oupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | node d                         | е-       | 2                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V.H.F. coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          | .00001                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng-wave shunt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          | .00025                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          | .01                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms suppressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          | .01                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ins suppressor<br>ins suppressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | o l      | .05                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ins suppressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | ~        | .05                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ins suppressor<br>ins suppressor<br>ning indicator de<br>ternal speaker co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | 1        |                                                                         |

#### McMICHAEL 366 R.G. ALIGNMENT

(Continued from page 43.)

Connect a modulated oscillator to the grid cap of V1 and an output meter across the external speaker terminals. speaker plug should be pushed in just far enough to make contact, while leaving the internal speaker in circuit—about 1-in. is far enough. Connect a .1 mfd. condenser across the oscillator section of the gang

condenser to stop the valve oscillating.

Inject a signal of 128.5 kc. and trim T1,
T2, T3 and T4 for maximum reading on the output meter.

Medium Waves.—Inject a signal of 214 metres to the aerial and earth terminals and tune it in. Trim T5 for maximum reading on the output meter. A weak reading on the output meter. A weak signal should be used and the peak nearest minimum capacity selected. Then adjust T6 and T7 for maximum.

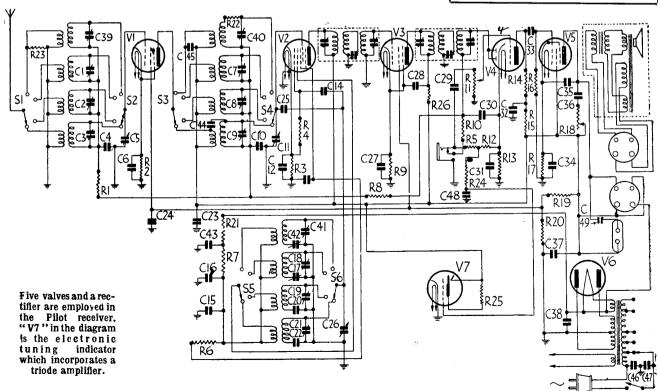
Long Waves.—Inject and tune in a signal of 1,000 metres and adjust T8 for

maximum on the output meter.

Calibration.—With the gang condenser vanes fully meshed the pointer should be resting over a black mark at the top end of the tuning scale and filling in the two lines forming the outer scale.

If this is not so, then the screw in the centre of the pivot must be slackened and the pointer moved to the correct position.

QUICK TESTS


Quick tests are available on this receiver on the terminal panel at the rear of the chassis shelf. Volts measured between this and the chassis should be:

Red, 220v., smoothed H.T.

Green, speech coil.

Blue, speech coil.

Black, 385v., unsmoothed H.T.



For more information remember www.savoy-hill.co.uk