# PHILIPS 805A, 805X

Four-valve, plus rectifier, three waveband superhet. A cathode-ray tuning indicator is incorporated and provision made for the connection of a pick-up and low impedance extra speaker. Model 805A is for operation from AC mains supply 100-260v, 50-60 cycles. Model 805X incorporates the same chassis, but is supplied with a Philips 7882C converter, and is suitable for DC mains of 100-145v and 200-250v. It is a simple matter to disconnect the converter so that . the instrument may be operated from AC. Manufactured by Philips Lamps, Ltd., Service Department, 74 - 94, Cherry Orchard Road, Croydon.

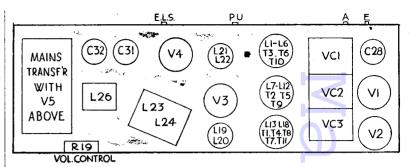
input to the tuned grid coils L4, L5, L6 required. which feed the HF pentode V1. This valve is biased by R2 decoupled by C3 and is controlled from the AVC line. The screen derives its potential from a tapping on the potential divider network, R8, R9, R10.

V1 is HF transformer-coupled to the grid circuit of the triode-hexode frequencychanger V2. The primary coils L7. L8. L9 are untuned, but the secondaries L10. L11, L12 are tuned by the VC2 section of the ganged condenser.

C6 is the grid blocking condenser: R3 connects the grid of V2 to the AVC line. Standing bias for V2 is derived from R4, decoupled by C7.

The triode oscillator section of V2 has a tuned grid circuit comprising the coils. L13, L14, L15, with their various trimmers. across the VC3 section of the gang condenser. R5 and C8 are the grid leak and condenser. Anode reaction coils are L16. L17, L18.

An iron dust core IF transformer L19potential divider through the resistance indicator and AVC diode.


AERIAL coupling coils, L1 (SW), L2 | R14; this resistance acts as the LF load (MW) L3 (LW) transfer the signal resistance when the pick-up circuit is

It will be seen from the circuit diagram that the pick-up feeds into the grid of V3. the screen being the anode with R14 the load resistance and C24 the coupling condenser to the volume control R19 and thence on to the output stage.

A second iron dust core IF transformer L21-L22, couples the IF signal from V3 to the signal diode of V4. R15 is the filter resistance, whilst R16, R17 comprise the LF load resistance from which the volume control R19 is fed.

The volume control is tapped and to this tapping is connected the bass boost network, R18, C20. The grid of the tuning line is decoupled by R11 and C13. indicator is fed from the junction of R16 and R17.

coupling condenser, C21, hands on the V4. The cathode circuit of this valve prises C26, R27 and R28. includes resistances R23, R24, decoupled L20 transfers the signal of V2 to the grid by C22. The pentode section of V4 is V5, smoothing comprising the choke L26. of the IF pentode V3, which is biased by biased from the tapping between R23 and smoothing condenser C31 and reservoir R13, decoupled by C16. The screening R24, while the full bias across both condenser C32. C33 is the HF filter grid of this valve connects to the HT resistances is applied to the tuning condenser.



The AVC diode is fed from L21 via C23, the load resistance being R25; the AVC

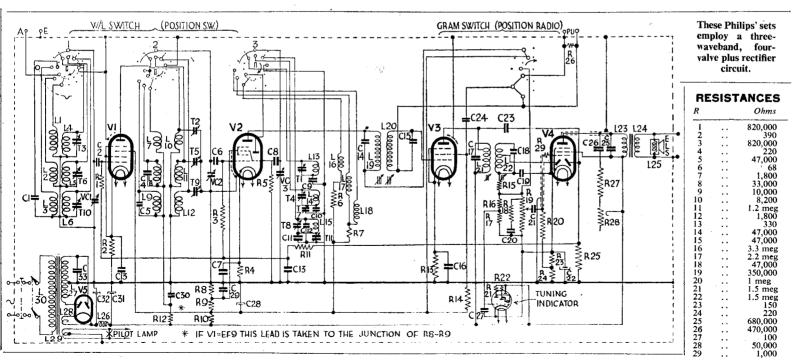
The output from V4 is coupled by the transformer L23-L24 to the low-im-From the volume control, R19, the pedance permanent-magnet speaker, in which L25 is the speech coil. A permanent signal via the grid stopper R29 to the grid degree of tone correction is effected by of the double-diode-pentode output valve C25, while a variable tone control com-

HT supply is from the full-wave rectifier

Continued on page vii

Layout diagram of the chassis showing where the valves and trimmers are located.

## **VALVE READINGS**


| V   | Type          | Electrode  | Volts | Mas |
|-----|---------------|------------|-------|-----|
| ī   | EF8 or        | Anode      | 260   | 4   |
|     | EF9           | Screen     | 160   | .65 |
|     |               | Cathode    | 1.6   |     |
| 2   | ECH3          | Anode      | 155   | 2.2 |
|     |               | Screen     | 95    | 3.2 |
|     |               | Osc. anode | 145   | 3.2 |
|     |               | Cathode    | 2.2   |     |
| 3   | EF9           | Anode      | 275   | 5.5 |
|     |               | Screen     | 85    | 1.5 |
|     |               | Cathode    | 2.1   |     |
| 4   | EBL1          | Anode      | 235   | 35  |
|     |               | Screen     | 260   | 6   |
|     |               | Cathode    | 15    | _   |
| 5   | AZI           | Cathode    | 300   | _   |
|     | EM4           |            | _     |     |
| Tun | ing Indicator | 70         |       |     |

### **CONDENSERS**

| C                                    |       | Mfds    | C    |     | Mfds      |
|--------------------------------------|-------|---------|------|-----|-----------|
| 1                                    |       | .000082 | 18   |     | .000103   |
| 2                                    |       | .0001   | 19   |     | .000047   |
| 3                                    |       | .1      | 20   |     | .047      |
| 4                                    |       | .000047 | 21   |     | .022      |
| 5                                    |       | .00027  | 22   |     | 25        |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |       | .0001   | 23   | ·   | 8.2 m mfd |
| 7                                    |       | .1      | 24   |     | .047      |
| 8                                    |       | .000047 | 25   |     | .022      |
| 9                                    |       | .0045   | 26   |     | .047      |
| 10                                   |       | .0004   | 27   |     | .047      |
| 11                                   |       | .000136 | 28   |     | 32        |
| 12                                   |       | .000039 | 29   |     | -1        |
| 13                                   |       | .1      | 30 . |     | .047      |
| 14                                   |       | .000091 | 31   |     | 32        |
| 15                                   | • • • | .000097 | 32   |     | 28        |
| 16                                   | • •   | .047    | 33   | • • | .022      |
| 17                                   | • • • | 000103  | 1 55 | • • |           |

### WINDINGS

| L                                                                             | Ohms                                                                                                        | L                                                                                | Ohms                                                                      |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1<br>22<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>110<br>111<br>112<br>113<br>114 | 3.5<br>28<br>100<br>Very low<br>5<br>45<br>2.5<br>280<br>Very low<br>5<br>470<br>Very low<br>45<br>45<br>19 | 16<br>17<br>18<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 1 3.5 1 3.5 1 3.5 1 7.5 7.5 4.5 + 4.0 640 640 4 280 400 Very low Very low |
|                                                                               |                                                                                                             |                                                                                  |                                                                           |



# PILOT "TWIN MIRACLE"

Four-valve, plus rectifier, transportable superhet covering two wavebands and for operation from all-dry batteries or AC or DC mains. Made by Pilot Radio, Ltd., 31-33, Park Royal Road, London, NW 10.

INTERNAL frame aerials L2 (MW). L4, (LW) may be coupled to an external aerial, if desired, via C1 and coupling coils L1, L3, L2 and L4 are tuned by VC1 and the signal passed direct to the grid of the heptode frequency changer V1.

The oscillator section of this valve has a grid circuit L5 (MW), L6 (LW) tuned by supply socket, current flowing through the VC2; L7 is the reaction winding fed from relay winding L17 energises the relay the oscillator anode by means of HF choke magnet and pulls the contacts over for L8, and C4.

The IF transformer, L9-L10, couples the IF signals to the grid of the IF pentode over from the battery to the smoothing amplifying valve V2. A second IF trans- circuit comprising L16, C13, C14 which is and inject a 200m signal. Adjust T5 and former L11-L12 hands on the signal to fed from a tap on the line-cord R16. The T6 for maximum output. the single diode-triode valve V3.

The LF signal is coupled from the load | the mains via the line-cord R16, and the R7 which feeds the triode section of V3. The DC potential across the load resistances is fed via R10 to the grid circuit of V1 and V2 as AVC.

V3 is resistance capacity coupled by R3. C10 and R8 to the pentode output valve V4. This is transformer coupled by L13— L14 to the permanent-magnet speaker in which L15 is the speech coil.

Fixed tone correction is effected by C12, while bias is derived from the resistances R11, R12 in the HT circuit (the latter on mains operation).

The power supply on battery operation is derived from the all-dry HT and LT combined battery which plugs into a socket and is left permanently connected. Switches S3 and S4 are ganged and when these are switched to the ON position the valve filaments are in parallel across the LT section of the dry battery.

If the mains lead is then plugged into a AC-DC operation.

The HT positive line is then switched rectifying valve V5 has its heater fed from

resistances by C8 to the volume control HT negative line from the anode is taken via the relay contacts through the indicator lamp, R14 to the chassis.

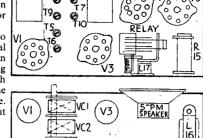
> The grid circuit of V4 is connected to HT negative via R12 for additional biasing. The filament current is taken from the HT line, the current flowing through V4, V3 and V2 in parallel, through VI and R13 in parallel, and so through the indicator lamp and R14 to the HT negative. The indicator lamp lights up on mains but not on battery.

### GANGING

IF Circuits.—Inject a 451 kc signal via a .1 mfd condenser to the grid of V1.

Adjust T1, T2, T3 and T4 in that order for maximum reading on output meter.

MW Bands.--Check that pointer is horizontal with gang at maximum. The output from the oscillator may be coupled | to the aerials by a turn of wire round the outside of the cabinet.


The trimmers are accessible through the removable panel in the base of the cabinet with the battery removed: thus the receiver must be ganged when operating from the mains.

Switch to MW, tune receiver to 200m.

Continued in end column

WW

R2



Two views of the Pilot chassis identifying the major components and showing trimmer positions.

### VALVE READINGS

| $\nu$ | Type        | Electrode  | Volts     | Mas      |
|-------|-------------|------------|-----------|----------|
| 1     | 1A7EG       | Anode      | 75        | .3       |
|       |             | Osc. anode | 78        | 1.3      |
|       |             | Screen     | 37        | .6       |
| 2     | IN5G        | Anode      | 75        | .8       |
|       |             | Screen     | 75        | .1       |
| 3     | IH5G        | Anode      | 15        | .02      |
| 4     | IC5EG       | Anode      | 78        | 4.7      |
|       |             | Screen     | . 80      | 2.0      |
| 5     | 25Z6G       |            |           |          |
| Al    | ove figures |            | ttery ope | eration. |

Values are slightly higher on mains. Indicator Lamp: 6.3 v. .15 amp., M.B.C. Battery: Ever-Ready All-dry 3.

Feature of the

circuit is the relay

# PHILIPS Continued from page vi

IF Circuits.—The wavelength switch at MW, variable condenser at minimum and volume control at maximum, apply a signal of 470kc to control grid of the V2. Detune circuits by placing across them a 20,000 ohms resistance in series with an 0.1 mfd condenser and trim for maximum output as shown in the following table :---

L19 L20 L21 L22 Detune Tune 1st Tune 2nd Detune Detune Tune 3rd Detune Tune 4th Detune Detune

Keep output low to avoid operating the AVC.

SW Band.—Set gang to a Philips 15° ig. Trim T1, T2, and T3 for maximum output at 17mc.

MW Band.—Set gang to the 15° jig. Trim T4, T5, and T6 for maximum output at 1,442kc.

Tune gang to 545kc. Trim T7 for maximum output on a 545kc signal.

Reset gang to 15° jig and retrim T4 for maximum output at 1,442kc.

LW Band.—Set gang to the 15° jig. Trim T8, T9, T10 at 405kc.

Tune variable to 160kc. Trim T11 for maximum output on a 160kc signal.

Reset gang to 15° jig and retrim T8 for maximum output at 405kc.

### Continued from column 3

Inject and tune in a 500m signal and adjust T7, while rocking gang.

LW Band. - Switch to LW, tune receiver to 1,200m and feed in a 1,200m signal.

Adjust T8 and T9 for maximum output. Inject and tune in a 1,900m signal and adjust T10 for maximum output, while

|   | rocking gang. WINDINGS                    |      |                                                                              | 4                                             |                             |                                                                |
|---|-------------------------------------------|------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|----------------------------------------------------------------|
|   |                                           |      |                                                                              |                                               |                             |                                                                |
|   | L                                         |      | Ohms                                                                         | L                                             | •                           | Ohm                                                            |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | SIST | 1<br>1.5<br>2<br>21<br>3.5<br>6.5<br>85<br>130<br>6.5                        | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17  |                             | 6.5<br>7.5<br>4.5<br>430<br>                                   |
| į | R                                         |      | Ohms                                                                         | R                                             |                             | Ohms                                                           |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      |      | 56,000<br>2,200<br>1 meg<br>220,000<br>47,000<br>2.2 meg<br>2 meg<br>3.3 meg | 9<br>10<br>11<br>12<br>13<br>14<br>15*<br>16† | );;<br>;;<br>;;<br>;;<br>;; | 3.3 meg<br>3.3 meg<br>1,200<br>2,200<br>25<br>50<br>700<br>620 |
| I | *                                         | When | 1D5 valve                                                                    | used                                          |                             | oped at 200)                                                   |

1,500 ohms tapped at 700 ohms. † 910 ohms for 1D5 valve untapp ed.

which automatically switches over to battery or mains according to which form of supply is con-RFLAY nected. IN BATTERY POSITION) **≷**88 INDICATOR **CONDENSERS** Mfd .0003 .00006 .0003.0003 .01 .01 RELAY. WINDING! .002 . . ٠. . .

SEPTEMBER, 1943

L3