COSSOR

50

Three-valve, plus rectifier, twowaveband tuned radio-frequency receiver for use on 200-250-v. A.C. or D.C. supplies. Made by A. C. Cossor, Ltd., Highbury Grove, London, N.5.

circuit.—A simple transformer couples the aerial to V1, a pentode radiofrequency amplifier. This valve has a tuned anode circuit with coupled windings in the grid circuit of V2, another pentode, used as a reactive grid-leak separate unit underneath. detector.

Volume is controlled by the bias on setting. V1 and by reaction. R6 and R8 are reaction stabilisers.

R14 is a bleeder to drain off excess output of the rectifier, and R15 protects the pilot lamps from surges. R14 may be on the mains resistance or may be a

Connections are provided for a high-

A parallel-fed auto-transformer couples up V3, an output triode. H.T. is obtained from the usual half-wave A.C.-D.C. circuit and all the heaters are series run. taken on 200 k.A.C. at maximum volume

Left, the top - of -

chassis layout dia-

gram for the Cossor

model 50. The set

is an A.C. - D.C.

"straight" model,

and the chassis is

arranged on logical

and accessible lines.

GANGING.

TI is carefully set at the factory for correct calibration and should not be readjusted if voidable.

If realignment is necessary, first check Continued in next column

A pentode is used as a grid-leak detector with manually controlled reaction. An auto-connected L.F. transformer feeds an output triode. The mains section comprises the usual A.C.-D.C. half-wave rectifier.

American Midgets—Continued

an average value or a value chosen to suit controlled by R1 which regulates the the particular voltage in use. The bias and the aerial shunt load. resistance is ascertained as follows:-

Mains voltage-set voltage

Valve current.

For example, on 230-volt mains, the extra line cord should be :-

 $\frac{230-117.5}{2} = 380 \text{ ohms, approx.}$

Cords for 200 and 250 volts are usually rated at 280 and 450 ohms respectively.

For details of a five-valve .3 amp. set using a ballast tube plus line cord, see Belmont 650 in October Service En-GINEER.

GANGING

With a T.R.F. set of this type, the trimmers should be set for accurate calibration at about 250 metres. A compromise adjustment for best average results over the whole band may be necessary.

CIRCUIT B.

to the first valve, in this case a 12K7 promise setting giving best average variable-mu R.F. amplifier. Volume is calibration and sensitivity.

Tuned grid coupling follows to a 128A7 used as a leaky-grid detector (the diodes are not employed). The grip leak is of high value—5 megohms. Resistance-capacity coupling leads to a 50L6 output tetrode.

H.T. from a half-wave 35Z4 is fed to the output valve with a 20-mfd. section of C8 for smoothing and decoupling. H.T. for the rest of the set is reduced by R6 and decoupled by 20 mfd.

The valves are .15-amp. types, the voltages being 12.6, 12.6, 50 and 35 in the order given above. Although the circuit of this set was marked 235 v.. the 275-ohm ballast tube and 475-ohm line cord are actually suitable for an "average" mains input of 225v. approxi-

Suitable line cords for accurate adjustment to other voltages would be: 200 v. 325 ohms, 230 v. 525 ohms, and 250 v. 650 ohms.

This particular model has no ganging AS in the previous circuit, the aerial adjustments; but where these are pro-

Continued from previous column

that pointer is vertical with condenser fully anti-clockwise.

Inject 240 m. (1,250 kc.) to aerial and earth, set pointer to this wavelength and adjust T1 and T2 for maximum.

There are no separate adjustments for long waves.

VALVE READINGS

\boldsymbol{V}	Type	Electrode	Volts	Ma-
1	13VPA	Anode	128	.5
-	10.11.	Screen	48	.5
		Cathode	2	
2	13SPA	Anode	30	.8 .2
2	100111	Screen	22	.2
		Cathode		
3	402P	Anode	157	19
0	4021	Cathode	12	
4	SUA	Cathode	197	82
-	Dial le	amps, 8 v., 1.6	w., M.E.S.	

\boldsymbol{R}	Ohms	R	Ohms
1	25,000	4	50,000
2	750	5	10,000
3	12,000	6	200

n	Onyms	A.		Onne	
7	1 meg.	13		600	
8	300	14		3,000	
9	50.000	15		70	
10	.1 meg.	16		440	
11	.5 meg.	17		90	
12	.25 meg.	18		90	

CONDENSERS

\boldsymbol{c}		Mfds.	C	Mfds.		
1	•	.0005	13 .	25		
2		15 mmfds.	14 .	1		
3		.1	15 .	0001		
6		.1	16 .	1		
7		.1	17 .	. '50		
10		.1	18 .	005		
		.0005	19 .	. 8		
$\frac{11}{12}$.0001	20 .	. 8		
	• •		91	1		

WINDINGS

$oldsymbol{L}$	Ohms ·	L		Ohms '	
1 2 3 4 5 6 7 8 9	9.5 1.5 13.5 1.5 12.5 1.2 13.3 6	10 11 12 13 14 15 16 17		7.5 7.5 1,600 2,250 175 .19 400 2	