"TRADER" SERVICE SHEET # ACE A.C. # **COMPONENTS AND VALUES** | | CAPACITORS | Values | Loca-
tions | |------------------------|----------------------------------|-------------------|----------------| | C1 | Aerial coupling | 500pF | G4 | | C2§ | I.F. filter tune | $820 \mathrm{pF}$ | G4 | | $\overline{\text{C3}}$ | A.G.C. decoupling | $0.01\mu F$ | F4 | | C4 | Aerial coupling | $0.0033\mu F$ | G3 | | $\tilde{\text{C5}}$ | 1 1st I.F. trans. | 100pF | A2 | | Č6 | tuning | 100pF | A2 | | Č7 | H.T. by-pass | $0.01 \mu F$ | F4 | | Č8 | L.W. osc. trim | 25pF | F3 | | C98 | S.W. osc. tracker | $0.0022 \mu F$ | F3 | | C10 | M.W. osc. tracker | 380pF | F3 | | C11 | L.W. osc. tracker | 150pF | F3 | | C12 | Osc. anode coup | 50pF | G3 | | C13 | A.G.C. decoupling | $0.01 \mu F$ | G4 | | C14 | S.G. decoupling | $0.01 \mu F$ | F4 | | C15 | 2nd I.F. trans. | 100pF | B2 | | C16 | tuning | 100pF | B2 | | C17 | 5 | 120pF | F4 | | C18 | I.F. by-passes } | 120pF | F3 | | C19* | V3 cath, by-pass | $25\mu F$ | E4 | | C20 | A.G.C. coupling | 23pF | F4 | | C21 | A.F. coupling | $0.05 \mu F$ | F3 | | C22 | P.U. tone corrector | 250pF | F4 | | C23 | V3 anode decoup | $0.1 \mu F$ | E4 | | C24 | A.F. coupling | $0.01 \mu F$ | F4 | | C25 | I.F. by pass | 250pF | E4 | | C26 | A.G.C. decoupling | $0.01 \mu F$ | F4 | | C27* | G.B. by-pass | $25\mu F$ | E3 | | C28 | Part tone control | $0.05 \mu F$ | E3 | | C29* | | $16\mu F$ | C1 | | C30* | H.T. smoothing { | $8\mu F$ | C1 | | C31* | | $16\mu F$ | C1 | | C22† | G.W. aerial trim | | G3 | | C33‡ | M.W. aerial trim | | G3 | | C34‡ | L.W. aerial trim | | G3 | | C35† | Aerial tuning | P. Williams | B1 | | C36‡ | S.W. osc. trim | | F3 | | C37‡
C38‡ | M.W. osc. trim
L.W. osc. trim | | F3
F3 | | | | | | * Electrolytic. † Variable. ‡ Pre-set. § Two in parallel. Covering A51, and "Minigram" and "Mayfair" Autoradiograms FIVE Ace receivers are covered in this Service Sheet, which was prepared from an A51 table receiver. The other models are the "Mayfair" MRG535 (single speed) and MRG5335 (3speed) autoradiograms; and the "Minigram" RGA535 (single speed) and RGAS35 (3-speed) autoradiograms. An identical chassis is employed in all five autoradiograms. An identical chassis is employed in all five models. It is a 4-valve (plus rectifier) 3-band superhet designed to operate from A.C. mains only of 190-250 V. Release date (approximate, all ARG models, November 1951) and original prices: A51, March 1951, f19 2s 64; MRGS35, f55 3s 1d; MRGS535, f58 16s 8d; RGA535, f42 13s 1d; RGAS535, f46 6s 7d. Purchase tax extra. | | RESISTORS | Values | Loca | |--------------------------|---|---|----------------------| | R1
R2
R3
R4 | Aerial shunts { V1 osc. C.G V1 osc. stopper | 2·2kΩ
10kΩ
47kΩ
120Ω | G4
F4
G4
G3 | | R5
R6
R7 | A.G.C. decoupling
Osc. anode feed
A.G.C. decoupling | 1ΜΩ
22kΩ
1ΜΩ | F4
G4
F4 | | R8
R9
R10 | S.G. H.T. feed
I.F. stopper
Diode load | $\begin{array}{c} 15 \mathrm{k}\Omega \\ 47 \mathrm{k}\Omega \\ 470 \mathrm{k}\Omega \end{array}$ | F4
F4
F4 | | R11
R12
R13
R14 | Volume control
V3 G.B
V3 H.T. decoupling
V3 anode load | 1MΩ
2·4kΩ
68kΩ
220kΩ | E3
F4
E4
F4 | | R15
R16
R17 | A.G.C. diode load A.G.C. decoupling G.B. resistors { | $1M\Omega$ $1M\Omega$ 47Ω | F4
D3
D3 | | R18
R19
R20
R21 | } v4 c.g { | 150Ω
68kΩ
470kΩ | E4
E4 | | R22
R23
R24 | Part tone control Tone control H.T. smoothing | 1·5kΩ
680Ω
50kΩ
500Ω | D3
E3
D3
D3 | | R25 | V4 anode stopper | 47Ω | E4 | The appearance of the Ace A51. # CIRCUIT DESCRIPTION Aerial input is inductively coupled on S.W. by L2, and capacitatively "bottom" coupled on M.W. and L.W. by C4 to single tuned circuits L3, C35 (S.W.), L4, C35 (M.W.) and L5, C35 (L.W.) which precede triode hexode valve (V1, Brimar 6K8GT), operating as frequency changer (Continued col. 1 overleaf) | OT | HER COMPONENTS | Approx.
Values
(ohms) | Loca-
tions | |-------------------|---|---|----------------| | L1
L2 | I.F. rejector
S.W. aerial coup | 1.8 | G4
G3 | | L3
L4
L5 | Aerial tuning coils { | $\frac{-}{1\cdot7}$ | G3
G3
G3 | | L6
L7 | Osc. reaction coils | $0.4 \\ 1.0$ | F3
F3 | | L8
L9
L10 | Oscillator tuning coils | 5·5
17·5 | F3
F3
F3 | | L11
L12
L13 | } 1st I.F. trans. { Pri. Sec. | 8·0
8·0 | A2
A2 | | L14
L15 | $\begin{cases} 2 \text{nd I.F. trans.} \begin{cases} \text{Pri.} \\ \text{Sec.} \end{cases} \\ \text{Speech coil} \\ \dots \end{cases}$ | 5·5
5·5
2·5 | B2
B2 | | T1 | O.P. trans. { Pri
Sec | $400.0 \\ 0.5$ | E3
E3 | | T2 | $\begin{cases} \text{Pri., total } \dots \\ \text{H.T. sec., total } \dots \\ \text{Heater sec.} \dots \end{cases}$ | $ \begin{array}{r} 34.0 \\ 450.0 \\ 0.2 \end{array} $ | C2 | | S1-S14
S15 | Waveband switches
Mains sw., g'd R11 | | G3
E3 | # 1054 A.C. RANGE # Supplement to Wireless & Electrical Trader, August 2, 1952 # Circuit Description—continued with internal coupling. I.F. rejection by L1, C2. Oscillator anode coils L8 (S.W.), L9 (M.W.) and L10 (L.W.) are tuned by C39. Parallel trimming by C36 (S.W.), C37 (M.W.) and C8, C38 (L.W.); series tracking by G9 (S.W.) C10 (M.W.) and C11 (L.W.). Second valve (V2, Brimar 6K7CT) is a variable mu R.F. pentode operating as intermediate frequency amplifier with tuned transformer couplings C5, L11, L12, C6 and C15, L13, L14, C16. Intermediate frequency 472 kc/s. Diode signal detector is part of double-diode triode valve (V3, Brimar 6Q7CT). Audio-frequency component in rectified output is developed across load resistor R10 and passed via C21 and volume control R11 to control grid of triode section, which operates as A.F. amplifier. I.F. filtering by C17, R9, C18 and C25. Second diode of V3 is fed from V2 anode via C20, and the resulting D.C. potential developed across its load resistor R15 is fed back as bias to V1 and V2, giving automatic gain control. Provision is made for the connection of a gramophone pick-up across R11 via S14, which closes in the gram position of the waveband switch control. S6 closes and S13 opens on gram to prevent radio break-through. Resistance-capacitance coupling via R14, C24 and R20 between V3 triode anode and beem prevent radio break-through. Resistance-capacitance coupling via R14, C24 and R20 between V3 triode anode and beam tetrode output valve (V4, Brimar 6V6GT). Variable tone control in anode circuit by R22, R23 and C28. Provision is made for the connection of a low-impedance external speaker across T1 secondary. Bias for V4 is obtained from the voltage dropped across R17 and R18 in the H.T. negative lead to chassis. H.T. current is supplied by I.H.C. full-wave rectifying valve (V5, Brimar 6X5GT). Smoothing by R21, R24 and electrolytic capacitors C29, G30, G31. ### VALVE ANALYSIS Valve voltages and currents given in the table below are those measured in our receiver when it was operating from A.C. mains of 230 V. The receiver was tuned to the highest wavelength end of M.W., but there was no signal input. Voltage readings were measured with an Avo Electronic Test Meter which has a very high internal impedance, and allowance should be made for the extra current drawn by meters of lower impedance. Chassis was the negative connection. connection. | 77 - 1 | Anode | | Screen | | Cath. | |--|--|---|-------------------|--------------------------|--------------| | Valve | V | mA | v | mA | v | | V1 6K8GT
V2 6K7GT
V3 6Q7GT
V4 6V6GT
V5 6X5GT | $\begin{cases} 230 & \text{Oscil} \\ 115 & \text{230} \\ 70 & \text{260} \\ 280 \dagger \end{cases}$ | $ \begin{bmatrix} 2.0 \\ 1ator \\ 4.5 \\ 9.0 \\ 0.45 \\ 38.0 \\ - \end{bmatrix} $ | 130
130
230 | 5·8
2·0
2·0
2·0 | 1·0
310·0 | † A.C. reading. # CIRCUIT ALIGNMENT I.F. Stages.—Switch receiver to M.W. and turn gang to maximum capacitance. Connect output of signal generator, via an 0.1 µF capacitor in the "live" lead, to control grid (top cap) of V1 and chassis. Feed in a 472 kc/s (635.6 m) signal and adjust the cores of L14, L13, L12 and L11 (location references B2, F4, A2, G4) for maximum output. Repeat these adjustments. R.F. and Oscillator Stages.—Transfer signal generator leads via a suitable dummy aerial, to generator leads, via a suitable dummy aerial, to A and E sockets. Underside view of the chassis, showing all the R.F. and oscillator adjustments. L.W.—Switch receiver to L.W., tune to 2,000 m, feed in a 2,000 m (150 kc/s) signal and adjust the cores of L10 (F3) and L5 (G3) for maximum output. Tune receiver to 1,000 m, feed in a 1,000 m (300 kc/s) signal and adjust C38 (F3) and C34 (G3) for maximum output. Repeat these adjustments, M.W.—Switch receiver to M.W., tune to 500 m, feed in a 500 m (600 kc/s) signal and adjust the cores of L9 (F3) and L4 (G3) for maximum output. Tune receiver to 200 m, feed in a 200 m (1,500 kc/s) signal and adjust C37 (F3) and C33 (G3) for maximum output. Repeat these adjustments. ments. S.W.—Switch receiver to S.W., tune to 50 m, feed in a 50 m (6 Mc/s) signal and adjust the cores of L8 (F3) and L3 (G3) for maximum output. Tune receiver to 20 m, feed in a 20 m (15 Mc/s) signal and adjust G36 (F3) and G32 (G3) for maximum output. Repeat these adjust- # **GENERAL NOTES** Switches.—S1-S12 are the waveband switches, and S13, S14 are the radio/gram change-over switches ganged in a single rotary unit beneath the chassis. This is indicated in our underside view of the chassis and shown in detail in the diagram in col. 3, where it is drawn as seen from the rear of an inverted chassis. The table below it gives the switch positions for the four control settings, starting from the fully anti-clockwise position of the control knob. A dash indicates open, and C, closed. S15 is the Q.M.B. mains switch, ganged with the volume control R11. the volume control R11. Scale lamps Speaker leads 0 0 C39 0 0 0 C35 0 (0) • Plan view of chassis, showing two of the I.F. core adjustments. The remaining I.F. adjustments, together with all the R.F. and oscillator cores and trimmers, are shown in the underside view of the chassis. Scale Lamps.—These are two Osram lamps, with small clear spherical bulbs and M.E.S. bases. rated at 6.5 V, 0.3 A. External speaker.—Two sockets are provided at the rear of the chassis for the connection of a low impedance (3-42) external speaker. Chasis Divergencies.—C25 is shown in the maker's diagram as being connected between V3 triode anode and chassis, whereas in our chassis Diagram of the waveband switch unit, drawn as seen from the rear of an inverted chassis. Below is the associated switch table. | Switches | s.w. | M.W. | L.W. | Gram. | |----------|------|------|------|-------| | S1 | С | | | | | S2 | | С | С | | | S3 | С | | | | | S4 | | С | | | | S5 | | | С | | | S6 | | | | С | | 87 | С | | | | | 88 | | C | | | | S9 | | | C | | | S10 | С | - | | | | S11 | - | C | | | | S12 | | | С | | | S13 | С | C | C | | | S14 | | | | С | | | | | | | it was connected as shown in our diagram, so it may be connected either way. Similarly, we give the value of C19 and that of C27 as $25\,\mu\text{F}$, as they were in our chassis. In other chassis they may be $50\,\mu\text{F}$ each. Our H.T. smoothing electrolytic was as shown in our table, but it is shown in the makers' diagram as being $25\,\mu\text{F}+25\,\mu\text{F}$ for C29 and C31, and a separate $8\,\mu\text{F}$ reservoir for C30. Drive Cord Replacement.—About 50 inches of high grade flax fishing line, plaited and waxed, is required for a new tuning drive cord, which should be run as shown in the accompanying sketch, which is drawn as seen from the rear of the chassis, neglecting obstructions, when the gang is at maximum capacitance.