'TRADER' SERVICE SHEET

FERGUSON 503,

503C, 503RG, 503T, 503CT, 503RGT

■HE Ferguson 503 receiver has an 8-valve (plus THE Ferguson 503 receiver has an 8-vaive (pins rectifier) AC 4-band superhet chassis suitable for mains of 200-250 V, 50-60 C/S, and covering short-wave ranges of 12-35 and 25-70 m. An identical chassis is fitted in the 503C console and 503RG radiogramophone but this Service Sheet was prepared on a

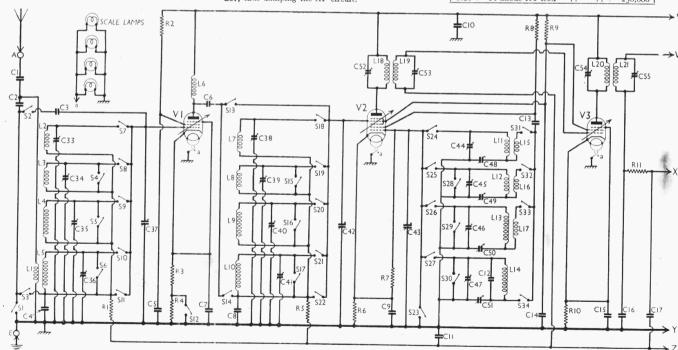
503. The chassis in the 503T table model receiver, 503CT console and 503RGT radio-gramophone is very similar but in these models the short-wave ranges are

Choke-fed tuned-grid coupling by L6, C6 and, on MW and LW, C8, and tuning coils L7 (SW1), L8 (SW2), L9 (MW) and L10 (LW) which are tuned by C42, between V1 and heptode frequency changer valve (V2, National Union 6A7). Oscillator grid coils L11 (SW1), L12 (SW2), L13 (MW) and L14 (LW) are tuned by C43; parallel trimming by C44 (SW1), C45 (SW2), C46 (MW) and C12, C47 (LW); series tracking by C48 (SW1), C49 (SW2), C50 (MW) and C51 (LW). Reaction by coils L15 (SW1), L16 (SW2), L17 (MW) and direct coupling on LW.

Third valve (V3, National Union 6D6) is a variable-nu pentode operating as intermediate frequency amplifier with tuned-primary tuned-secondary trans-former couplings C52, L18, L19, C53 and C54, L20, L21, C55.

Intermediate frequency 465 KC/S.

Diode second detector is part of double-diode triode valve (V4, National Union 75). Audio frequency component in rectified output is developed across load resistance R14 and passed via AF coupling condenser C19 and manual volume control R13 to CG of triode section, which operates as AF amplifier. Variable tone control by RC filter R12, C18, and provision for connection of gramophone pick-up, across C19, R13. IF filtering by R11, C16, C17.


Second diode of **V4**, fed via **C20** from **L21**, provides DC potential which is developed across load resistance **R19** and fed back through decoupling circuits as GB to RF, FC and IF valves, giving automatic volume control.

On MW and LW only, noise suppressor valve (V9, National Union 76), operating as a diode with anode and cathode strapped, may be connected across V4 signal diode output by closing the local-distant switch S37, thus damping the AF circuit.

(V8, National Union 80). Smoothing by speaker field L24 and electrolytic condensers C30, C31. RF filtering in HT circuit by C10 and in mains circuit by C32.

COMPONENTS AND VALUES

	RESISTANCES		Values (ohms)
Rı	Vr CG decoupling	٠	500,000
R2	Vi SG HT feed		100,000
R ₃	VI fixed GB resistances	- (300
R ₄)	į.	5,000
R ₅	V2 tetrode CG decoupling		500,000
R6	V2 fixed GB resistance		200
R7	V2 osc. CG resistance		25,000
R8	V2 osc. anode HT feed		25,000
R9	V2, V3 SG's HT feed		50,000
Rio	V ₃ fixed GB resistance		300
RII	IF stopper		25,000
R12	Variable tone control		500,000
R13	Manual volume control		500,000
R14	V4 signal diode load		500,000
R ₁₅	V ₄ GB resistance		10,000
R16	V4 triode and V5 anodes'	de-	
	coupling		100,000
R17	V ₄ triode anode load		250,000
R18	AVC line decoupling		500,000
R19	V ₄ AVC diode load		500,000
R20	V ₅ , V ₇ CG resistances	1	500,000
R21)	- 1	50,000
R22	V ₅ GB resistance		10,000
R23	V ₅ Anode load resistance		250,000
R24	V6 CG resistance		500,000
R25	V6, V7 GB resistance		300
R26	TI anode HT feed	٠. ا	250,000

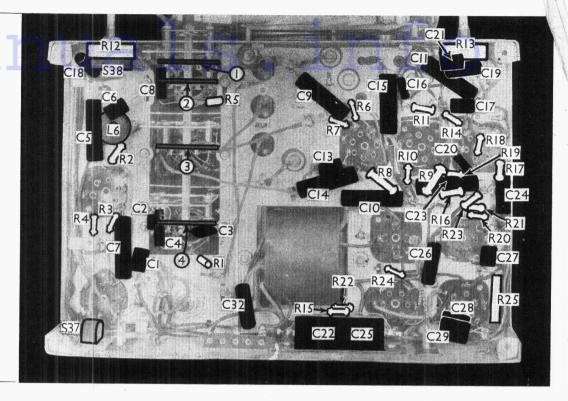
16-50 and 75-175 m. The differences in these models are explained under " $\operatorname{General\ Notes.}$ "

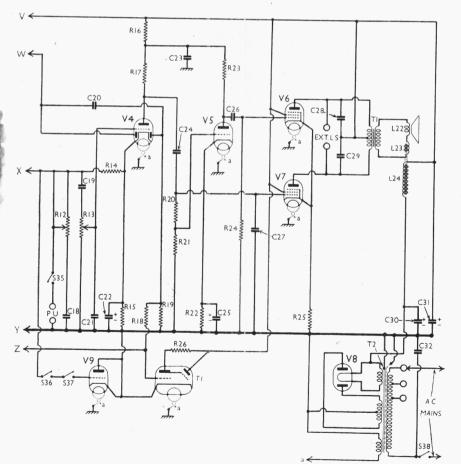
CIRCUIT DESCRIPTION

Aerial input via series condenser C1 and, on SW, condenser C2 and coupling condenser C3; on MW C2 and coupling condenser C4; on LW coupling coil L1; to single tuned circuits L2, C37 (SW1), L3, C37 (SW2), L4, C37 (MW) and L5, C37 (LW). C2 is connected across L1 to remove a resonance; C4 acts as a coupling impedance on MW; L1 also prevents hum modulation. First valve (V1, National Union 6D6) is a variable-mu pentode operating as RF amplifier.

Operating potential for tuning indicator (TI, National Union 6G5) is obtained from AVC line.

Resistance-capacity coupling by R17, C24 and R20, R21, C27, between V4 triode and one section (V7) of push-pull output stage comprising two pentodes (V6, V7, National Union 42's). Second section (V6) is fed by phase reversing valve (V5, National Union 76), which obtains its input voltage from the junction of R20, R21. Fixed tone correction in output stage by C28, C29. Provision for connection of high impedance external speaker across primary of T1.


Circuit diagram of the Ferguson 503 AC superhet. The same chassis is also fitted in several other models, while the 503 T chassis is similar except for the wavelength range of the two SW bands. The diagram continues over to the opposite


HT-currentis supplied by full wave rectifying valve emember

www.savoy-hill.co.uk

local-distant switch. The four rotary switch units are indicated by arrows, and are shown in detail in the diagrams on page VIII. The condensers C22 and C25 are two dry electrolytics in a single carton.

	CONDENSERS	Values (μF)
Cı	Aerial series condenser	0.00025
C2	Aerial coupling condenser	0.00025
C_3	Aerial SW1, SW2 coupling	0.00003
C4	Aerial MW coupling	0.002
C ₅	Vi SG decoupling	0.007
Č6	Part of VI to V2 RF coupling	
C ₇	VI cathode by-pass	0.00002
C8	VI to V2 MW and LW coupling	0.1
C ₉	Va cathoda by pass	0.003
Cio	V2 cathode by-pass	0.1
CII	AVC line decoupling	0.1
	AVC line decoupling	0.1
CI2	Osc. circuit LW trimmer	0.00007
C13	V2 osc. anode coupling	0.00022
C14	V2, V3 SG's decoupling	0.1
C15	V3 cathode by-pass	0.1
C16	IF by-pass condensers	0.00025
C17	1)	0.00025
C18	Part of variable tone control	0.004
C19	AF coupling to V ₄ triode	0.01
C20	Coupling to V4 AVC diode	0.00022
C2I	IF by-pass	0.00022
C22*	V4 cathode by-pass	25.0
C23	V ₄ , V ₅ anodes' decoupling	0.1
C24	V4 triode to V5 and V7 AF	01
	coupling	0.01
C25*	V5 cathode by-pass	5.0
C26	V ₅ to V ₆ AF coupling	0.01
C27	()	0.001
C28	Fixed tone correctors	0.002
C29	()	0.003
C30*	HT smoothing	8·o
C31*	1.1	16.0
C32	Mains RF by-pass	0.01
C33‡	Aerial circuit SW1 trimmer	
C34‡	Aerial circuit SW2 trimmer	
C35‡	Aerial circuit MW trimmer	
C36‡	Aerial circuit LW trimmer	
C37†	Aerial circuit tuning	
C38‡	V2 CG circuit SW1 trimmer	
C39‡	V2 CG circuit SW2 trimmer	
C40‡	V2 CG circuit MW trimmer	
C411	V2 CG circuit LW trimmer	
C42†	V2 CG circuit tuning	
C43†	Oscillator circuit tuning	
C44‡	Osc. circuit SW1 trimmer	No.
C45‡	Osc. circuit SW2 trimmer	
C46‡	Osc. circuit MW trimmer	1
C47‡	Osc. circuit LW trimmer	
C48‡	Osc. circuit SW1 tracker	
C49‡	Osc. circuit SW2 tracker	
	Osc. circuit MW tracker	
C50‡	Osc. circuit LW tracker	

Continued overleaf

For more informati remember www.savoy-hi .co.uk

THE WIRELESS & ELECTRICAL TRADER

FERGUSON 503 Continued

	CONDENSERS (Continued)		Values (μF)
C52‡ C53‡	1st IF trans. pri. tuning 1st IF trans. sec. tuning 2nd IF trans. pri. tuning	::	
C54‡ C55‡	and IF trans. sec. tuning		

* Electrolytic. † Variable. ‡ Pre-set.

7	OTHER COMPONENTS	Approx. Values (ohms)
Lı	Aerial LW coupling coil	125.0
L2	Aerial SW1 tuning coil	Very low
L ₃	Aerial SW2 tuning coil	0.02
L ₄	Aerial MW tuning coil	3.2
L5	Aerial LW tuning coil	18.0
L6	Vi anode RF choke	117.0
L7	V2 CG SW1 tuning coil	Very low
L8	V2 CG SW2 tuning coil	0.02
Lo	V2 CG MW tuning coil	3.2
Lio	V2 CG LW tuning coil	17.5
LII	Osc. circuit SW1 tuning coil	Very low
L12	Osc. circuit SW2 tuning coil	Very low
L13	Osc. circuit MW tuning coil	2.2
L14	Osc. LW tuning and reaction	4.0
L ₁₅	Oscillator SW1 reaction	0.4
L16	Oscillator SW2 reaction	1.0
LI7	Oscillator MW reaction	0.7
L18	rst IF trans.	9.0
Lig	(580	13.0
L20	and I.F trans { Pri	13.0
L21	(Sec	9.0
L22	Speaker speech coil	1.8
L23	Hum neutralising coil	O.I
L24	Speaker field coil	1,000.0
Tı	Speaker input Pri., total	725.0
	trans. Sec	0.3
an a	(Pri., total	17.0
T2	Mains Heater sec	0.02
	trans. Rect. heat. sec.	220:0
0.0	(HT sec., total	220.0
SI-S34		
S35		
S36	V9 control switch	
S37	Mains switch, ganged R12	
S38	Mains switch, ganged R12	

Removing Chassis.—To remove the chassis from the cabinet, remove the knobs (pull off) and the felt washers from the four control spindles. Now remove the four bolts (with washers and spring washers) holding the chassis to the bottom of the cabinet, when the chassis can be withdrawn to the extent of the speaker leads, which is sufficient for normal purposes.

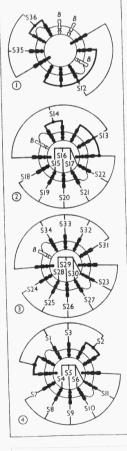
If the valves are removed, it should be noted when reblacing them that the screens go on V1, V2, V3, V4, and V5.

If it is desired to free the chassis entirely, unsolder the speaker leads and when replacing, connect them as follows:—F and 2 joined, red: 3, blue; r, blue; F, red/white.

Removing Speaker.—To remove the speaker from the cabinet, unsolder the leads and remove the nuts from the four screws holding it to the sub-baffle. When replacing, see that the transformer is on the left and connect the leads as above.

VALVE ANALYSIS

Valve	Anode Voltage (V)	Anode Current (mA)	Screen Voltage (V)	Screen Current (mA)
VI 6D6	255	5.6	72	1.5
V2 6A7		lator	62	2.7
V3 6D6	255 61	4.4 / 4.5 0.2	62	1.3
V4 75 V5 76	45	0 4	255	5.2
V6 42 V7 42	245 242	31.0	255	6.2
V8 80 V9 76	3431	0.0)		and the date
T.I. 6G5	43 Tai 255			


† Each anode AC.

Valve voltages and currents given in the table above are those measured in our receiver when it was operating on mains of 226 V, using the 220-230 V tapping on the mains transformer. The receiver was tuned to the lowest wavelength on the medium band and the volume and local-distant controls were at maximum (the latter down), but there was no signal input.

Continued on page V

SWITCH TABLE AND DIAGRAM

					* * * * * * * * * * * * * * * * * * * *	
Sw	ritch	SWI	SW ₂	MW	LW	Gram
	61 52 53 54 54 55 55 55 56 56 56 56 56 56 56 56 56 56	C C C C C C C C C C	C	C	C	C C C C C C C C C C C C C C C C C C C

Switch diagrams, as seen from the underside of the chassis, looking in the directions of the arrows in the under-chassis view.

S ₃ 8 Mains switch, ganged R ₁₂	Continued on page V
C55 C54 L18 L19 C55 C54 C53 C52	C42 C41 C40 L7 L8 L9 L10 C43 C47 C45 C5
V4 V3 V2	C47 C45 C51 C50 C50 C49 C48 C12 C44 C44 C34 C33 VI C16 C16 C16 C36 C35
V7 V6 ADJ	C30 C30 C31 V9 EARTH LEAD LEAD
SPEAKER MAINS L	GRN/BLK

Plan view of the chassis. R26 is inside the TI holder

Printed in Great Britain as a supplement to The Wireless & Electrical Trader by Sanders Phillips & Co., Ltd., The Baynard Press, Chryssell Road, London, S.W.9 www.savov-hill.co.uk